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Pulse evolution in nonlinear optical fibers with sliding-frequency filters
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The effect of fiber loss, amplification, and sliding-frequency filters on the evolution of optical pulses in
nonlinear optical fibers is considered, this evolution being governed by a perturbed nonlinear Schro¨dinger
~NLS! equation. Approximate ordinary differential equations~ODE’s! governing the pulse evolution are ob-
tained using conservation and moment equations for the perturbed NLS equation together with a trial function
incorporating a solitonlike pulse with independently varying amplitude and width. In addition, the trial function
incorporates the interaction between the pulse and the dispersive radiation shed as the pulse evolves. This
interaction must be included in order to obtain approximate ODE’s whose solutions are in good agreement with
full numerical solutions of the governing perturbed NLS equation. The solutions of the approximate ODE’s are
compared with full numerical solutions of the perturbed NLS equation and very good agreement is found.
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I. INTRODUCTION

Sliding-frequency filters~SFF’s! are used to suppress th
effect of the Gordon-Haus~GH! jitter due to erbium-doped
fiber amplifiers in optical communication systems@1,2#.
These all-optical amplifiers are used to counteract the
inherent in fiber optic cables. However, while the erbiu
doped fiber amplifiers amplify the signal, they also ampl
the noise in the system. In a soliton based communica
system, this noise amplification causes a shift in the sol
parameters, most importantly, in its amplitude and f
quency. As the soliton frequency is coupled to its veloc
this then causes random fluctuations in the soliton velo
and thus in the arrival time of the soliton. This negati
effect of amplification is known as GH jitter@3#.

To reduce the effect of noise, optical filters are used@4#.
A fixed-frequency filter can reduce GH jitter by creating
attractive value of soliton frequency, and thus velocity. R
dom noise will therefore not drive the soliton too far from
preferred velocity, reducing fluctuations in the soliton arriv
time. However, a fixed-frequency filter is unable to redu
radiation within the filter’s passband. To reduce this noise
sliding-frequency filter is employed@1#. A SFF allows the
central frequency of the filter to change along the length
the fiber. As the filter passband changes, the nonlinear
ton readjusts to this new frequency, while the nearly lin
radiation underneath does not. In this way radiation aro
and under the soliton is filtered out, reducing GH jitter.

The basic equation governing pulse propagation in a n
linear optical fiber is the nonlinear Schro¨dinger~NLS! equa-
tion

i
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]z
1

1

2
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]t2
1uuu2u50 ~1!

@5#. While an exact inverse scattering solution of the N
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equation exists@6#, there is no exact solution of the perturbe
NLS equation that results when the effect of SFF’s is add
Therefore approximate and/or numerical methods must
used to study pulse evolution governed by this perturb
equation. To counteract the pulse damping due to the fil
ing and the inherent fiber losses, periodically spaced opt
amplifiers are used, which in the limit of the amplifier spa
ing much smaller than the dispersion length can be mode
by a continuous system of amplifiers@2#. In an experimental
and numerical study, Mamyshev and Mollenauer@7# showed
that stable soliton propagation was possible with amplifi
tion for a range of filter sliding rates and strengths. In p
ticular it was found that there are upper and lower bounds
the soliton energy for which stable propagation is possib
For energies below the lower bound, the pulse decays
dispersive radiation due to excessive filtering and, for en
gies above the upper bound, a second soliton is formed
may be expected from inverse scattering theory@8#. Kodama
and Wabnitz@9# used a multiple scale analysis based on
slowly varying NLS soliton to derive ordinary differentia
equations governing the propagation of a soliton in the pr
ence of SFF’s and amplification. It was shown that the
equations possessed two fixed points, one of which w
stable and the other unstable. It was further shown that
stable fixed point existed for energies above a certain thre
old, in agreement with Mamyshev and Mollenauer@7#. How-
ever, the multiple scale analysis did not predict the up
energy bound. Burtsev and Kaup@10# used perturbed invers
scattering theory to derive the same approximate equat
governing the soliton as Kodama and Wabnitz@9#. As a per-
turbed soliton propagates, it sheds dispersive radiation
Burtsev and Kaup@10# deduced that it was this radiation th
gave rise to the second soliton. By extending their pertur
tion analysis to higher order, Burtsev and Kaup@10# obtained
estimates on this radiation which enabled them to find
approximation to the upper energy bound. This upper bo
was found to be in good agreement with that found fro
numerical results in@7#. Soliton propagation in the presenc
of SFF’s was also studied by Malomed and Tasgal@11# using
©2001 The American Physical Society04-1
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the same multiple scale method as Kodama and Wabnitz@9#,
but for ultrashort pulses for which the amplifiers must
taken as discrete.

All the previous analytical work on pulse propagation
the presence of SFF’s is based on a slowly varying solit
However, the choice of a slowly varying NLS soliton as t
approximate solution of the perturbed NLS equation has
drawbacks. The first is that the amplitude and width var
tions of the pulse are linked, as the amplitude and width o
NLS soliton are inversely proportional. It will be shown
the present work that decoupling the amplitude and wi
results in better agreement with full numerical solutions. T
second is that the approximate solution of@9,11# takes no
account of the dispersive radiation shed as the pulse evo
down the fiber. While the second order perturbed inve
scattering work of@10# does find equations for this shed r
diation, it does not include the damping effect of this rad
tion on the evolving pulse and the equations for the soli
amplitude and velocity are the same as those of@9,11#.

Anderson @12# developed an approximate Lagrangi
method that allows independent amplitude and width os
lations of a pulse. This method is based on using
‘‘chirped’’ NLS soliton with varying amplitude, width, and
velocity as a trial function in an averaged Lagrangian. Ho
ever, while the amplitude and width oscillations are no
independent under this method, Anderson’s method a
does not take account of the dispersive radiation shed as
pulse evolves. In many situations the inclusion of the sh
radiation is vital for obtaining good agreement with nume
cal solutions@13–15#.

An approximate method that does include the dispers
radiation shed as a pulse evolves was developed by Kath
Smyth @13# for the NLS equation~1!. Their approximate
method was again based on an averaged Lagrangian. H
ever, the trial function used was different from that of Ande
son @12#. As well as a varying solitonlike pulse with inde
pendent amplitude and width, their trial function included
‘‘shelf’’ term, which accounted for the dispersive radiatio
in the vicinity of the evolving pulse. Furthermore, the so
tonlike pulse was not chirped. Kath and Smyth showed t
the dispersive radiation shed by the evolving pulse is g
erned by a linearized NLS equation. By analyzing solutio
of this linearized NLS equation, the mass lost from the pu
to shed dispersive radiation was calculated. Kath and Sm
@13# thus added terms to the variational equations deri
from the averaged Lagrangian that included the effect of
shed radiation. It was found that the solutions of the modifi
variational equations were in excellent agreement with
numerical solutions of the NLS equation~1!.

The method of Kath and Smyth@13# has been extended t
study pulse propagation in other optical systems. It has b
used to study pulse propagation and switching in nonlin
twin-core fibers@14# and pulse propagation in nonuniform
fibers@15#. In both of these extensions, it was found that t
inclusion of the shed radiation was necessary in orde
obtain good agreement with numerical solutions, and that
agreement thus obtained was better than that obtained u
the chirp method of Anderson@12#.
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In the present work, the shelf method of Kath and Sm
@13# will be extended to study the evolution of pulses und
the action of SFF’s, fiber loss, and amplification. As the go
erning perturbed NLS equation is not conservative, an av
aged Lagrangian cannot be used to obtain approximate e
tions governing pulse evolution, as in@13#. Equations for
mass, momentum, and energy and their moments are th
fore used to obtain the approximate equations. In the cas
a conservative system, this is equivalent to using an avera
Lagrangian, due to No¨ther’s theorem. Using a similar analy
sis to that of Kath and Smyth@13#, the effect of the disper-
sive radiation shed as the pulse evolves is added to the
proximate equations. Solutions of these approxim
equations are then compared with full numerical solutions
the governing perturbed NLS equation and excellent ag
ment is found. It is found that the approximate equations
the present work give solutions in better agreement with
merical solutions than do those of@9–11#. The main reason
for this is that the amplitude and width oscillations of th
pulse are now independent. The present approximate e
tions also give the same lower energy bound for stable p
propagation as@9,10#. By using mass and energy conserv
tion, an approximation to the upper energy bound due to
formation of a second soliton is also found. This bound
found to be in good agreement with the numerical results
@7#.

II. APPROXIMATE EQUATIONS

Light propagating in a monomode, polarizatio
preserving, nonlinear optical fiber operating in the anom
lous group-velocity dispersion regime is described by
NLS equation@5#. When the effects of fiber loss and a SF
are added, the governing equation is a perturbed NLS eq
tion, which is

i
]u

]z
1

1

2

]2u

]t2
1uuu2u52 isu1 igS ]

]t
1 iVzD 2

u ~2!

in nondimensional form@2#. Here u is the complex-valued
envelope of the pulse,z is the normalized spatial variabl
along the length of the fiber, andt is the normalized time~in
a frame moving with the linear group velocity!. The first
term on the right represents uniform fiber loss, wheres is
the loss parameter@5#. The second term represents a S
with filter strengthg and frequency sliding rateV @2#. When
the amplifier spacing is much smaller than the dispers
length scale, the term2 isu on the right hand side of Eq.~2!
represents the excess of gain over loss fors,0 @2,5#.

The approximate method of Kath and Smyth@13# is now
extended to obtain an approximate solution of Eq.~2! that
describes pulse propagation under the influence of a SFF
loss. In the work of Kath and Smyth@13#, a trial function
was substituted into an averaged Lagrangian for the N
equation. Variations were then taken with respect to
pulse parameters and ordinary differential equations~ODE’s!
for these parameters were thus obtained. However, a
grangian only exists for conservative systems. With the l
terms on the right hand side of the perturbed NLS equa
4-2
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PULSE EVOLUTION IN NONLINEAR OPTICAL FIBERS . . . PHYSICAL REVIEW E 63 056604
~2!, this equation does not describe a conservative sys
However for nonconservative systems, approximate OD
governing pulse evolution can be obtained by substitut
the trial function of@13# into conservation and moment equ
tions. In the present context, a conservation equation d
not mean that the quantity is conserved. What is meant
equations for mass, momentum, and energy modified by
terms due to the SFF and fiber loss. The ODE’s obtai
from these conservation and moment equations are exa
those of@13# when the loss terms on the right hand side
the perturbed NLS equation~2! are set equal to zero. It is thi
conservation and moment equation approach that is use
the present work.

The perturbed NLS equation~2! has three conservatio
equations, commonly referred to as mass, momentum,
energy@16#, although in the context of optical fibers they d
not physically correspond to these quantities. In this reg
the three quantities

r5uuu2, ~3a!

J5
i

2
~uut* 2u* ut!, ~3b!

E5uutu22uuu4, ~3c!

are defined@16#, which are referred to as mass density, m
mentum density, and energy density, respectively. Here*
denotes the complex conjugate. From the perturbed N
equation~2!, the conservation equations

d

dzE2`

`

r dt52E
2`

`

@~2s12gV2z2!r14gVzJ

12g~E1r2!# dt, ~4a!

d

dzE2`

`

J dt52E
2`

`

@~2s12gV2z2!J14gVz~E1r2!

1 ig~ututt* 2ut* utt!# dt, ~4b!

d

dzE2`

`

E dt5E
2`

`

$~2s12gV2z2!~r22E!12g@4uutu2uuu2

1~u* !2ut
21u2~ut* !22uuttu2#12igVz~ut* utt

2ututt* 12uuu2uut* 22uuu2u* ut!%dt ~4c!

can be directly derived. The perturbed NLS equation~2! also
possesses moment equations. The moment equation us
the present work is the moment of momentum equation

d

dzE2`

`

tJ dt5E
2`

` FE1
1

2
r22~2s12gV2z2!tJ

1 igt~ut* utt2ututt* !24gVzt~E1r2!G dt,

~5!
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which again can be directly derived from the perturbed N
equation~2!.

It should be mentioned that the phase of the soliton is
determined by the conservation or moment equations
these equations are all independent of phase. An equatio
the phase for the NLS equation~1! can be derived from an
extension of No¨ther’s theorem@17# based on scale invarianc
of the NLS equation@13#. However, the equations for th
other parameters~amplitude, width, and velocity! will be
found to be independent of the phase and so the phase e
tion is not dealt with in the present work.

The key to the method of Kath and Smyth is the choice
trial function to use in the conservation and moment eq
tions ~4! and ~5!. Based on numerical solutions, previou
experimental work by other authors, and perturbed inve
scattering theory for the NLS equation, a solution of the fo

u5S h sech
t

w
1 ig Dexp@ iu# ~6!

was sought. The same trial function, extended to allow fo
variable pulse velocity, will be used in the present wo
Hence a solution of the form

u5S h sech
t2y

w
1 ig Dexp@ iu1 iV~ t2y!# ~7!

will be sought for the perturbed NLS equation~2!. Here the
amplitudeh, width w, velocity V, mean positiony, phaseu,
andg are functions ofz. The first term in sech is a varying
solitonlike pulse. The second term ing accounts for the low
frequency radiation in the vicinity of the pulse@13#. From
numerical solutions of the NLS equation and perturbed
verse scattering theory, it was found by Kath and Smyth@13#
that the radiation in the vicinity of the pulse is independe
of t. The reason for this is that the group velocity for th
linearized NLS equation iscg522k, wherek is the wave
number, so that low frequency radiation stays in the vicin
of the pulse. High frequency radiation rapidly propaga
away from the pulse, leaving a flat shelf of radiation
which the pulse remains. The radiation cannot continue to
flat away from the pulse, otherwise it would contain infini
mass. It is therefore assumed that the radiation is flat in
region 2l /2,t,l /2 about the pulse. The form of the ra
diation outside this region is dealt with in the next sectio
Furthermore, numerical solutions show that the radiation
of small amplitude, so thatugu!h.

Substituting the trial solution~7! into the conservation
laws and moment equations~4! and ~5! yields

~2h2w1l g2!
dV

dz
52

8

3
g~Vz1V!

h2

w
, ~8a!

d

dzS h2

w
22h4wD52~s1gV2z21gV212gVzV!

3S 4h4w2
h2

w D1gS 24h4w2214h2

5w3 D ,

~8b!
4-3
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d

dz
~phgw!5

2

3 S h2

w
2h4wD22~s1gV2z213gV2

14VgVz!phgw, ~8c!

d

dz
~2h2w1l g2!522~s1gV2z21gV2

12gVzV!~2h2w1l g2!2
4

3
g

h2

w
.

~8d!

The last equation is

dy

dz
5V, ~9!

which links the soliton center position to the velocity. Aft
some manipulation, the conservation and moment equat
~8a!–~8d! become

~2h2w1l g2!
dV

dz
52

8

3
g~Vz1V!

h2

w
, ~10a!

d

dzS h2

w
22h4wD52~s1gV2z21gV212gVzV!

3S 4h4w2
h2

w D1gS 24h4w2214h2

5w3 D ,

~10b!

d

dz
~hw!52~s1gV2z21gV212gVzV!hw

2
l g

2p

122~hw!2

w2
1

g

5

h

w
, ~10c!

dg

dz
5

2

3p

h

w2
@12~hw!2#2~s1gV2z215gV216gVzV!g

2
g

5

g

w2
. ~10d!

In deriving these equations, terms ofO(g2) and higher have
been dropped, except for the quadratic term ing proportional
to l . This term was not dropped as it is important in ma
conservation@13#.

For the case of the NLS equation~1!, Kath and Smyth
@13# found the lengthl of the shelf by matching the fre
quency of oscillation of the solution of the NLS approxima
equations near their fixed pointh5k̂ to the steady NLS
soliton oscillation frequency12 k̂, obtaining

l 5
3p2

8k̂
. ~11!
05660
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In turn, the fixed point amplitudek̂ was found from the NLS
energy conservation equation, which is the energy equa
~10b! with s5g50. It was thus found that the fixed poin
amplitude is

k̂5S 2h4w2
h2

w D 1/3

. ~12!

However, the only fixed point of the present approxima
equations~9!–~10d! in the absence of amplification ish50
due to the loss terms. Therefore the method of@13# cannot be
used to determinel . If the loss parameterss and g are
small, then a slowly varying approximation tol is Eq. ~11!.
In a similar vein, since the fixed point of the present appro
mate equations~9!–~10d! ~in the absence of amplification! is
h5k̂50, the NLS fixed point~12! will be used to determine
l via Eq.~11!. Fors andg small,k̂ given by Eq.~12! is not
constant, but slowly varying inz. This slowly varying ap-
proximation gives the local value of amplitudek̂ that the
pulse would achieve if the fiber loss and filter strength w
set to zero instantaneously. Furthermore, with this value
l , setting s5g50 in the present approximate equatio
~10a!–~10d! reduces the equations to those derived from
averaged Lagrangian by Kath and Smyth@13#.

Kodama and Wabnitz@9# and Malomed and Tasgal@11#
derived another set of approximate equations for the pu
amplitude and velocity based on another trial function. Th
method uses a trial solution in the form of a NLS solito
with variable parameters

u5h sech@h~ t2y!#exp@2 iu2 iV~ t2y!#. ~13!

This trial solution assumes that the amplitudeh and width
h21 of the pulse are inversely related. The pulse phaseu
and the pulse velocity isV. The parameters are all function
of z. Based on this trial solution, Kodama and Wabnitz@9#
used the method of multiple scales and Malomed and Ta
@11# used the balance-equation technique@18# to derive the
following approximate equations for the pulse parameters
Eq. ~13!:

dh

dz
522hH s1gFh2

3
1~V2Vz!2G J , ~14a!

dV

dz
52

4

3
h2g~V2Vz!. ~14b!

Notice that settingh51/w andg50 in the present approxi
mate equations~10a! and~10b! gives these equations, as e
pected.

The approximate equations~9!–~10d! along with Eqs.
~11! and~12! for l andk̂ are not yet complete as they do n
incorporate the effect of the dispersive radiation shed by
evolving pulse. This shed radiation is the subject of the n
section.
4-4
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III. RADIATION LOSS

As the pulse propagates it sheds radiation, so losing m
and momentum~and energy to higher order!. The effect of
this shed radiation on the evolution of the pulse will now
analyzed in a similar manner to that of Kath and Sm
@13,19#.

As the shed radiation has small amplitude, the nonlin
term in the perturbed NLS equation~2! is negligible away
from the pulse. Therefore, the equation governing the s
radiation is

iuz1
1

2
utt52 isu1 igutt22Vzgut2 igV2z2u. ~15!

The substitution

u5U~z,t !expS 2sz2
1

3
gV2z3D ~16!

transforms the linearized equation~15! to

iU z1S 1

2
2 ig DUtt522VzgUt . ~17!

The conservation of mass equation for this transform
equation~17! is

]uUu2

]z
5

i

2

]

]t
~U* Ut2UUt* !1g

]

]t
~U* Ut1UUt* !

22guUtu222iVzg~UUt* 2U* Ut!. ~18!

Integrating this mass equation from the edge of the shet
5y1l /2 to t5`, and noticing that the last two terms in E
~18! are already included in the original mass conservat
equation~4!, yields an expression for the mass radiated to
right away from the pulse as

d

dzEy1l /2

`

uUu2 dt52VuUu t5y1l /2
2 1Im~U* Ut!u t5y1l /2

22g Re~U* Ut!u t5y1l /2 . ~19!

Furthermore, for smallg, the velocityV may be taken to be
a constant to first order, as in@15#. If this approximation
were not made, then the radiation would be determined b
moving boundary problem whose boundaryt5y1l /2 is un-
known and determined by the approximate equations of S
II.

Kath and Smyth@13# used Laplace transforms to solve th
linearized NLS equation and thus determined an expres
for the mass radiated by the pulse. However, the lineari
equation~17! has nonconstant coefficients and so Lapla
transforms are not really useful for its analysis. In the p
ceding section, it was assumed thatg is small. For smallg,
the nonconstant coefficient in the linearized equation~17! is
slowly varying, and so may be taken to be constant on
fast scalez. Laplace transforms may then be used to solve
linearized equation~17!. Denoting the Laplace transform o
U(z,t) by Ū(s,t), it is found that
05660
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2
2 ig D Ūtt12VzgŪt1 isŪ50. ~20!

Keeping only leading order terms ing, we obtain the follow-
ing expression forUt :

Ut522VzgU2A2~e2 ip/41geip/4!S d

dzE0

z U

Ap~z2t!
dt D
~21!

on solving Eq.~20! for Ū and inverting the transform. Sub
stituting this expression into the mass conservation rela
~19! and ignoring quadratic terms ing, we obtain

d

dzEy1l /2

`

uUu2 dt52VuUu t5y1l /2
2

1~11g!U*
d

dzE0

z U

Ap~z2t!
dt

~22!

for the mass radiated to the right of the pulse~i.e., t.y
1l /2). An expression for the mass radiated to the left of
pulse~i.e., t,y2l /2) may be obtained in a similar manne
the only difference to the mass expression~22! being that the
sign of theVuUu2 term is reversed. Then inverting the tran
formation ~16! and substituting the right and left mass lo
expressions into the mass equation~4! for the pulse results in
the modified mass equation for the pulse

d

dzE2`

`

r dt52E
2`

`

@~2s12gV2z2!r14gVzJ

12g~E1r2!# dt22~11g!r

3expS 2sz2
1

3
gV2z3D

3
d

dz E0

z
r expS st1

1

3
gV2t3D

Ap~z2t!
dt. ~23!

Here r 5uu(y1l /2,z)u is the height of the shelf at its edge
The second term on the right hand side of Eq.~23! is the
mass shed by the pulse in the form of dispersive radiat
Whens andg are small, the height of the shelf is given b
the same expression as in Kath and Smyth@13#. Therefore

r 25
3k̂

8
~2h2w22k̂1l g2!. ~24!

When the mass loss term in Eq.~23! is added to the approxi
mate equations~9!–~10d! of the previous section, the equa
tion for g is modified to
4-5
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dg

dz
5

2

3p

h

w2
@12~hw!2#2~s1gV2z215gV216gVzV!g

2
g

5

g

w2
22a~11g!g, ~25!

where

a5
3k̂

8

1

r
expS 2sz2

1

3
gV2z3D

3
d

dzE0

z
r expS st1

1

3
gV2t3D

Ap~z2t!
dt. ~26!

In a similar manner, the momentum lost to shed dispers
radiation can be added to the momentum integral~4b!. How-
ever, it is found that the same momentum equation~4b! re-
sults. The energy lost to shed dispersive radiation is of hig
order than the lost mass and momentum, so can be negle
Hence the full set of equations governing pulse evolut
with fiber loss and SFF’s, including radiation loss, is

~2h2w1l g2!
dV

dz
52

8

3
g~Vz1V!

h2

w
, ~27a!

d

dzS h2

w
22h4wD

52~s1gV2z21gV212gVzV!S 4h4w2
h2

w D
1gS 24h4w2214h2

5w3 D , ~27b!

d

dz
~hw!52~s1gV2z21gV212gVzV!hw

2
l g

2p

122~hw!2

w2
1

g

5

h

w
, ~27c!

dg

dz
5

2

3p

h

w2
@12~hw!2#2~s1gV2z215gV216gVzV!g

2
g

5

g

w2
22a~11g!g, ~27d!

dy

dz
5V, ~27e!

with
05660
e

er
ed.
n

a5
3k̂

8

1

r
expS 2sz2

1

3
gV2z3D

3
d

dz E0

z
r expS st1

1

3
gV2t3D

Ap~ t2t!
dt, ~28a!

r 25
3k̂

8
~2h2w22k̂1l g2!. ~28b!

IV. RESULTS

In this section, solutions of the approximate equatio
~27! of the present work and the equations~14a! and~14b! of
@9–11# will be compared with full numerical solutions of th
governing perturbed NLS equation~2!. The approximate
ODE’s ~27! and ~14a! and ~14b! were solved numerically
using a fourth-order Runge-Kutta scheme. The integral in
expression~26! for a was evaluated numerically using th
method of Miksis and Ting@20#. The perturbed NLS equa
tion ~2! was solved numerically using an extension of t
pseudospectral method of Fornberg and Whitham@21#. The
extension involved calculating thet derivatives using fast
Fourier transforms and propagating in thez direction using a
fourth-order Runge-Kutta scheme, this propagation tak
place in Fourier space.

When the effect of amplification is added, the parame
s in the perturbed NLS equation~2! is negative. In this case
the approximate equations~27!, which include the effect of
radiation damping, possess a steady state. For smallg, it can
easily be found that this steady state is given by

V52Vz1
3V

4gk2
, ~29a!

w5
1

k
~29b!

at first order, where the steady amplitudeh5k is the solu-
tion of

gk613sk41
27

16

V2

g
50. ~30!

It should be noted that in the steady stategÞ0. This steady
state equation fork is the same as that found in@9,10#. For

usu.
3

4
V2/3g1/3 ~31!

Eq. ~30! possesses two solutions, the smaller of which
unstable and the larger of which is stable, again in agreem
with @9,10#. The inequality~31! determines the lower energ
bound on the existence of stable pulse propagation in
presence of SFF’s and amplification@9,10#, as for

usu,
3

4
V2/3g1/3 ~32!
4-6



m
bl

ng
ch

L
nd
wi
e

e

a-

a
n
ud

tw
n
u
on

i

a
o

e
y

-

f a
ve

nd
is

ill
li-

ade
on.
of
ich

tion,

n

ent.
-
on

en

oli-
lu-
or

is
was
al
is
p-
t
s
I for
as

y

nd-

es

PULSE EVOLUTION IN NONLINEAR OPTICAL FIBERS . . . PHYSICAL REVIEW E 63 056604
Eq. ~30! possesses no real solutions.
For a given value of the filter strengthg, a sufficiently

high value of the amplificationusu amplifies the dispersive
radiation to the point at which a second soliton can for
This formation of a second soliton is obviously undesira
in applications and was termed instability in@7,10#. How-
ever, this is not instability in the sense that the evolvi
pulse loses its coherence. The parameter values for whi
second soliton will form were determined in@10# via the
perturbed inverse scattering solution of the perturbed N
equation~2!. In the present work equations for mass a
energy will be used to determine when a second soliton
form. From Eqs.~3c!, ~8b!, and~27b! it can be seen that th
energy of the pulse is

E5
h2

w
22h4w. ~33!

If there is no filtering and amplification, then an initial puls
will evolve to a steady soliton for whichh5k andw51/k
and whose energy isE52k3. Hence an initial pulse can
evolve to a steady soliton only if its initial energy is neg
tive. If its initial energy is positive, then it will decay into
dispersive radiation alone. The borderline case is then
initial pulse with energyE50. From the energy expressio
~33! we see that for this borderline case the pulse amplit
and width are related by

hw5
1

A2
. ~34!

Let us now consider a pulse of amplitudeh and widthw
which has just enough mass and energy to break up into
solitons. At the boundary between one and two solito
forming, the second soliton will have zero energy. Let
take the final steady amplitude and width of the first solit
to beh5k andw51/k. Then

E5
h2

w
22h4w52k3, ~35!

since the second soliton has zero energy. From Eqs.~3a! and
~8d! it can be seen that the total mass of the two solitons

M52h2w5A2h12k ~36!

on equating the pulse mass to the mass of the final ste
soliton with amplitudek plus the mass of a pulse with zer
energy, for which the amplitude-width relation~34! holds. In
making this division of the mass and energy, it has be
assumed that in the borderline case no mass and energ
taken away by dispersive radiation. On solving fork from
the energy conservation result~35! and then substituting into
the mass relation~36!, it is found that

~hw!62
7

2
~hw!41

7

4
~hw!22

1

8
50, ~37!

so thathw51.702. Therefore forhw.1.702 an initial pulse
will break up into two solitons, both of nontrivial final am
05660
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n
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n
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plitude. In the preceding analysis for the generation o
second soliton, the effects of amplification and filtering ha
been ignored. However, the conditionhw.1.702 at some
point in the evolution of the pulse for formation of a seco
soliton will still be valid if it is assumed that, when there
sufficient mass and energy for a second pulse to form, it w
do so, and it will then evolve under the influence of amp
fication and filtering. Much the same assumption was m
in @10# based on their perturbed inverse scattering soluti
However, the present analysis for predicting the formation
a second soliton can be extended to equations for wh
there is no inverse scattering solution. The NLS equation~1!
possesses an inverse scattering solution. Using this solu
@8# showed that, for a boundary condition of the formu
5h secht, a second soliton will form for the NLS equatio
whenh.1.5, which is in good agreement with the valueh
.1.702 found from the present mass and energy argum

The approximate equations~27! can now be used to de
termine when a second soliton will form during the evoluti
of an initial pulse. The combinationhw is calculated as the
pulse evolves and a second soliton is said to form wh
hw.1.702. Figure 1 shows a comparison in theusu-g plane
of the boundaries between the regions of one and two s
tons as given by the approximate and full numerical so
tions. Also shown in this figure is a similar comparison f
the region~32! for no stable pulse. It can be seen that there
excellent agreement for the region of no stable pulse, as
also found in@10#. The agreement between the numeric
and approximate solutions for the region of two solitons
good in view of the approximations made to derive the a
proximate boundaryhw51.702. It can further be seen tha
the agreement for the region of two solitons decreases ag
increases. This is to be expected as the analysis of Sec. II
calculation of the effect of the shed dispersive radiation w
based upon assuming thatg is small. The overall comparison
for the region of two solitons is similar to that obtained b
Burtsev and Kaup@10#.

FIG. 1. Number of stable pulses in theusu-g plane as given by
the approximate and full numerical solutions for the soliton bou
ary conditionh51, w51, andV51 for the filter sliding rateV
50.1. Boundaries from full numerical solution, —; boundari
from approximate equations~27!, – – – – .
4-7
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If the effect of the dispersive radiation shed as the pu
evolves were neglected, so thata50, then the approximate
equations~27! would not possess a steady state and th
would be a persistent oscillation inh, w, and g about the
state given by Eq.~30!. As the amplitude and width of the
pulse oscillate, dispersion radiation is generated in the s
under the pulse, which is then amplified and filtered. T
steady oscillations in the absence of damping then repre
a balance between the amplitude and width oscillations
this radiation in the shelf. The inclusion of the effect of t
dispersive radiation shed as the pulse evolves is vital in o
to drive the system to a steady state. This shed radia
leaks away from the shelf and allows the system to settl
a steady state. In this regard, Mamyshev and Mollenauer@7#
noted that full numerical solutions of the perturbed NL
equation~2! show oscillations in the pulse amplitude, whic
they attributed to the generation of radiation by the slid
and filtering.

Figure 2~a! shows the evolution of the pulse amplitude
given by the full numerical solution of the governing equ

FIG. 2. Comparison between approximate and numerical s
tions for soliton boundary condition withh51, w51, andV50
with parameter valuesV50.1, g50.03, ands520.1. ~a! Full
numerical solution, —; solution of approximate equations~27! with
radiation,– – – –;solution of approximate equations~27! without
radiation,•••; solution of approximate equations~14a! and ~14b!,
•—•—. ~b!Full numerical solution, —; solution of approximat
equations~27! with radiation,– – – –.
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tion ~2!, by the present approximate equations~27!, both
with and without radiation damping, and by the solution
the approximate equations~14a! and ~14b! of @9,10# for a
case of stable pulse propagation for which the inequality~31!
holds. It can be seen that the numerical amplitude shows
oscillation which is also present in the solution of the pres
approximate equations~27! with radiation loss, and that ther
is excellent agreement between these two solutions.
main difference between the numerical and approximate
lutions is a phase difference, which is expected as equat
for the phase are of higher order than the modulation eq
tions ~27! @22,23#. It can be further seen that the solution
the modulation equations~14a! and~14b! of @9,10# does not
oscillate and in fact gives the mean of the numerical osci
tions. This is because their perturbation solution~13! has
fixed the widthw of the pulse to be the inverse amplitud
1/h, so that the pulse cannot undergo the amplitude-wi
oscillations exhibited by the numerical and present appro
mate solutions. The final observation to be made about
2~a! is that, if the radiation damping in the approxima
equations~27! is neglected~i.e., a50), the approximate so
lution exhibits amplitude-width-shelf oscillations that do n
settle to a steady state, as noted in the previous paragr
The addition of loss due to dispersive radiation allows le
age from the shelf under the pulse so that the pulse can s
to a steady state. It can therefore be concluded that allow
the pulse amplitude and width to vary independently and
inclusion of radiative loss result in better agreement with
full numerical solution. Neither of these effects was includ
in the perturbation solutions of@9,10#.

Figure 2~b! shows the evolution of the pulse amplitude
given by the full numerical solution and by the present a
proximate equations for the same parameter values as in
2~a! for a larger range ofz. It can be seen that the numeric
amplitude shows long term oscillations which are mirror
by the approximate solution. The approximate soluti
shows excellent agreement with the numerical solution
terms of both the final steady amplitude and the value ofz at
which the oscillations have essentially died out.

Let us now consider the evolution of a pulse in the a
sence of amplification. Figure 3~a! shows a comparison be
tween the solutions of the present approximate equat
~27!, the approximate equations~14a! and ~14b! of @9–11#,
and the full numerical solution of the perturbed NLS equ
tion ~2!. The present approximate equations were solved b
with and without the effect of shed dispersive radiation. T
parameter values used were the same as those of Malo
and Tasgal@11#, V50.1, g50.09, and s50.046. The
boundary pulse was taken as a NLS soliton withh51 and
w51 and the initial velocity wasV50. As can be seen from
the figure, the solution of the present approximate equati
is closer to the numerical solution than the solution of t
approximate equations of@9–11#, especially for largerz. It
can also be seen that for the NLS soliton boundary condi
the shed dispersive radiation makes little difference to
evolution of the pulse. This is because the nonzero loss
quickly damps the dispersive radiation so that it has ess
tially no effect on the evolution of the pulse. Indeed, t
approximate solution is slightly closer to the full numeric

u-
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PULSE EVOLUTION IN NONLINEAR OPTICAL FIBERS . . . PHYSICAL REVIEW E 63 056604
solution when the effect of the shed dispersive radiation
neglected. This counterintuitive result is due to the err
made in the derivation in Sec. III of the effect on the pulse
the dispersive radiation and again implies that the disper
radiation can be neglected for nonzero fiber lossess for a
soliton boundary condition.

Figure 3~b! shows a comparison between the pulse vel
ity as given by the approximate and numerical solutions
the same parameter values as in Fig. 3~a!. This velocity com-
parison shows a marked difference between the approxim
solution of the present work and that of@9–11#. It can be
seen that the velocity as given by the approximate equat
of @9–11# approaches a steady value, while the velocity
given by the present approximate equations continues to
crease asz increases, in agreement with the full numeric
solution. In addition, the velocity as given by the appro
mate equations~27! is in good agreement with the numeric
velocity. As for the amplitude comparison of Fig. 3~a!, the
inclusion of shed radiation makes little difference to the a

FIG. 3. Comparison between approximate and numerical s
tions for soliton boundary condition withh51, w51, andV50
with parameter valuesV50.1, g50.09, ands50.046. Full nu-
merical solution, —; solution of approximate equations~27! with
radiation,– – – –;solution of approximate equations~27! without
radiation,•••; solution of approximate equations~14a! and ~14b!:
•—•—. ~a! Amplitudeh as a function of distancez. ~b! Velocity V
as a function of distancez.
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proximate velocity due to the nonzero fiber losss damping
the dispersive radiation.

As radiation loss makes little difference for NLS solito
boundary conditions, it cannot explain the difference b
tween the solution of the approximate equations~27! and the
equations~14a! and ~14b! of @9–11#. Therefore the only ex-
planation for the difference must be in the trial functio
used. The trial function used in@9–11#, Eq. ~13!, does not
allow the pulse amplitude and width to vary independen
Rather, they are restricted to be inversely proportional, a
a NLS soliton. Figure 4 shows the product of amplitude a
width hw as given by the solution of the approximate equ
tions ~27! with radiation for the same parameter values as
Fig. 2. Notice that the amplitude and width are clearly n
inversely proportional, in contrast to the assumption made
@9–11#. The trial function used in the present work, Eq.~7!,
allows for independently varying pulse amplitude and wid
As found previously in the case of amplification, this add
degree of freedom results in better agreement with full
merical solutions.

Let us now examine the evolution of a non-NLS solito
boundary condition. As large loss and filter strength act
damping, killing off most dynamic, evolutionary behavio
we shall take small values fors andg. Figure 5~a! shows a
comparison between the pulse amplitudeh as given by the
present approximate equations~27!, both with and without
radiation damping, and by the full numerical solution of t
perturbed NLS equation~2!. The boundary condition is a
non-NLS soliton pulse withh51.25 andw51. The initial
velocity was taken asV50.1 and the parameter valuess
50, g50.01, andV50.1 were chosen. The pulse is ther
fore propagating into a lossless fiber with a SFF, so t
dispersive loss is expected to have an effect on the p
evolution. No comparison was made with the solution
Eqs. ~14a! and ~14b! as these approximate equations a
valid only for a NLS soliton boundary condition. It can b
seen from the amplitude comparison shown in Fig. 5~a! that
incorporating radiation loss gives an approximate amplitu
in better agreement with the full numerical amplitude. T
radiation loss acts as a damping, without which the pu

u-

FIG. 4. The product of amplitude and widthhw as given by the
approximate equations~27! with radiation for soliton boundary con
dition with h51, w51, andV50 and parameter valuesV50.1,
g50.09, ands50.046.
4-9
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amplitude is overestimated at every oscillation. However
can be seen that the amplitude of the oscillations of the
proximate solution is decaying slightly faster than that of
numerical solution, so that the radiation damping has b
overestimated. There is again a phase difference and a p
difference between the approximate and numerical amplit
oscillations which is due to the assumption that the sh
forms instantaneously. The phase of the amplitude osc
tion is a higher order effect, and, while methods exist
determine equations for this phase@22,23#, these methods do
not determine the initial phase, which is of importance he
In this regard, it should be noted that the amplitude of
pulse oscillation is in good agreement with the numeri
amplitude.

Figure 5~b! shows the velocityV of the pulse as given by
the solution of the approximate equations~27!, both with and
without radiation damping, and by the full numerical sol
tion of the perturbed NLS equation~2!. The boundary and
parameter values are as for Fig. 5~a!. It can be seen that th
inclusion of radiative loss is necessary in order to obt
good agreement with the numerical solution, particularly

FIG. 5. Comparison between approximate and numerical s
tions for nonsoliton boundary condition withh51.25, w51, and
V50.1 with parameter valuesV50.1, g50.01, ands50.0. Full
numerical solution, —; solution of approximate equations~27! with
radiation,– – – –;solution of approximate equations~27! without
radiation, •••. ~a! Amplitude h as a function of distancez. ~b!
Velocity V as a function of distancez.
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largez. As for the amplitude oscillations of Fig. 5~a!, there is
again a phase and period difference between the nume
and approximate velocity oscillations.

Using the same parameters values as Malomed and Ta
@11#, Fig. 6 shows a comparison between the pulse amplit
h as given by the solution of the present approximate eq
tions ~27!, both with and without radiation loss, and the fu
numerical solution for the non-NLS soliton boundary con
tion with h51.25, w51, andV50.1. The parameters use
wereV50.1, g50.03, ands50.005@11#. As for the com-
parison shown in Fig. 3, adding radiation loss causes li
change in the agreement with the full numerical solutio
This is again due to the damping of the radiation by the fi
loss (sÞ0). It can also be seen that radiation loss overe
mates the amplitude damping near the boundaryz50. This
is not surprising as the radiation loss was derived for largz
behavior@13#. Without radiation loss, the amplitude oscilla
tion has too large an amplitude nearz50.

V. CONCLUSIONS

The evolutionary behavior of pulses in nonlinear optic
fibers including fiber loss, amplification, and SFF’s has be
examined. As exact solutions of the governing perturb
NLS equation~2! do not exist, approximate methods we
used to analyze the pulse evolution. The approximate met
of @13# was extended and approximate evolution equati
for the pulse were derived using conservation and mom
equations. Major benefits of this method are that it allows
amplitude and width of the pulse to evolve independen
and that it incorporates the effect of the dispersive radiat
shed as the pulse evolves. Excellent agreement was fo
between solutions of these approximate equations and
numerical solutions of the governing perturbed NLS eq
tion ~2!. Based on a mass and energy argument, a cond
was also found for an evolving pulse to split into two pulse
Good agreement was found between this condition and

u-

FIG. 6. Comparison between approximate and numerical s
tions for the pulse amplitudeh for the nonsoliton boundary condi
tion with h51.25, w51, and V50.1 with parameter valuesV
50.1, g50.03, ands50.005. Full numerical solution, —; solution
of approximate equations~27! with radiation,– – – –; solution of
approximate equations~27! without radiation,•••.
4-10
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numerical solutions of the governing perturbed NLS eq
tion ~2!. Furthermore, comparisons were made with solutio
obtained from the perturbation equations of@9–11#. It was
found that the present approximate equations give be
agreement with full numerical solutions and that the previo
perturbation equations miss important features of the p
evolution. This is because~i! the present method allows fo
p

i-

tt.

a
l-

05660
-
s

er
s
e

independent amplitude and width oscillations of the pu
and ~ii ! the present method includes the dispersive radia
shed by the pulse as it evolves. The perturbation equation
@9–11# do not include these effects. Finally, it was conclud
that in the absence of amplification and when fiber loss
present, the damping effect of shed dispersive radiation
negligible due to the damping of this radiation.
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